

Hose made with PVC and Ester based polyurethane liner, reinforced with PVC helix, high abrasion resistant - EXTRA HEAVY DUTY

Applications

Suction and delivery of abrasive materials such as sand, cement, gravels, stones. It is used also in shot blasting and in all those applications where resistance to abrasion is needed.

Technical Features

Very strong hose made of two layers: the external one is in PVC reinforced with an anti-shock PVC helix. The inner surface is completely smooth and consists of a Polyurethane layer of 1.2 mm.

Properties

The hose is appreciated for its excellent resistance to abrasion and vacuum in heavy duty applications, resistant to ageing, ozone, UV rays, hydrolysis, weather conditions. This product has been improved with a new PU compuond which makes it 35 % more abrasion resistant compare to the previous version.

Standards

RoHS 2011/65/EU Directive, REACH Regulation (1907/2006), TRB S 2153. It can be manufactured in antistatic version adding a copper wire. By earthing the copper wire in accordance to TRB S 2153, the hose is electrically bonded. The electrical resistance $R \le 10^2$ Ohm/m is according to ISO 8031 - ATEX Directive 94/4/EC and 99/92/EC).

Temperature range

Technical data										
Part number	Inside ø (mm)	Min. wall thickness (mm)	Max. wall thickness (mm)	Weight (g/m)	Working press. (bar)	Bursting press. (bar)	Vacuum (mH20)	Bending radius (mm)	Coil length (m)	Volume (m³)
UR 01 038.0 000.0	38	3,9	4,6	680	5,0	15	10	155	30	0,191
UR 01 052.0 000.0	52	4,3	5,0	983	4,0	12	9	200	30	0,316
UR 01 063.0 000.0	63	4,7	5,5	1360	4,0	12	9	260	30	0,504
UR 01 076.0 000.0	76	4,9	5,8	1650	3,0	9	9	310	30	0,647
UR 01 102.0 000.0	102	6,0	7,0	2670	3,0	9	8,5	410	30	0,783
UR 01 127.0 000.0	127	6,3	7,4	3490	2,5	7,5	8	510	30	1,230
UR 01 152.0 000.0	152,4	6,7	8,6	4860	2,0	6	8	610	20	1,329

56 Abrasion